Microsoft Quick C Compiler
December 21, 2010When I first came in contact with this compiler, I was just starting high school and eager for the challenges ahead (except for the material which didn’t interest me — basically non-science courses). When I went to pick the courses for the year, I noticed a couple which taught computer programming. The first course, which was a pre-requisite for the second, taught BASIC while the second course taught C programming. At this point in my life, I was an old hand at BASIC, so I basically breezed through first programme. The second course intrigued me much more. I was familiar with C programming from my relatively brief experience with the Amiga, but I had a lot left to learn. My high school didn’t use the Lattice C compiler, but a Microsoft C compiler instead. I located the gentleman who taught the course and he pointed me to a book called Microsoft C Programming for the PC written by Robert LaFore and the Microsoft QuickC Compiler software. I had a job delivering newspapers at the time, so I could just barely afford the book using salary and tips saved from two weeks doing hard time ($50 at the time), but the compiler was just too expensive. So I did what any highly effective teenager would do, basically I dropped really big hints around the house (including the location and price of the compiler package I wanted) until my parents purchased a copy for me on my birthday.
There are a number of differences between the BASIC and C programming languages. One of the more obscure differences lies in how the C programming language deals with special variables that can hold memory addresses. These variables are called pointers and are an integral part of the syntax and functionality of the language. BASIC did have a few special functions which could accept and address locations in memory – I’m thinking of the CALL and USR functions specifically, although there were others. However, a variable holding an address was the same as one holding any other number since BASIC lacked the concept of strong types. The grammar of the C language is also much more complex than BASIC; it had special characters and symbols to express program scope and perform unary operations, which introduced me to the concept of coding style. When a programmer first learns a particular style of coding, it can turn into a religion, but I hadn’t really been exposed to the language long enough to form an opinion. That would come later, and then be summarily discarded once I had more experience.
There were libraries of all sorts which provided functionality for working with strings, math functions, standard input and output, file functions, and so on. At the time, I thought C’s handling of strings (character data) was incredibly obtuse. Basically, I thought the need to manage memory was a complete nuisance. BASIC never required me to free strings after I had declared them, it just took care of it for me under the hood. Despite the coddling I received, I was familiar with the concept of array allocations since even BASIC had the DIM command which dimensioned array containers; re-allocation was also somewhat familiar because of REDIM. However, there were many more functions and parameters in C related to memory management, and I just thought the whole bloody thing was a real mess. The differences between heap and stack memory confused me for a while.
There were many features of the language and compiler I did enjoy, of course. Smaller and snappier programs were a huge benefit to the somewhat sluggish software produced by the QuickBASIC compiler and the BASIC interpreter. The compiled C programs didn’t have dependencies on any run-time libraries either, even though there was probably a way to statically link the QuickBASIC modules together. Pointers were powerful and were loads of fun to use in your programs, especially once I learned the addresses for video memory which introduced me to concepts like double buffering when I began learning about animation. Writing directly to video memory sounds pretty trivial to me right now, but it was so intoxicating at the time. I was more involved in game programming by then and these techniques allowed me to expand into areas I never considered. It allowed for flicker-free animation, lightning fast ASCII/ANSI window renderings via my custom text windowing library, and special off-screen manipulations that allowed me to easily zip buffers around on the screen. A number of interesting text rendering concepts came from a book entitled Teach Yourself Advanced C in 21 Days by Bradley L. Jones, which is still worth reading to this day.
At around this time, I also started to learn about serial and network communications. The latter didn’t happen until my last year at high school. Basically, I wanted to learn how to get my computers to talk to one another. It all started when I became enchanted by the id Software game called DOOM, which allowed you to network a few machines together and play against each other in a vicious winner takes all death-match style combat. Incidentally, games like Doom, Wolfenstein 3D, or Blake Stone: Aliens of Gold led me down another long-winding path: 3D graphics, but that didn’t happen until a few months later. Again, the book store came to the rescue by providing me with a book entitled C Programmer’s Guide to Serial Communications by Joe Campbell. I was somewhat familiar with programming simple software which could use a MODEM for communication, since BASIC supported this functionality through the OPEN function, but I knew very little about the specifics. Once I dug into the first few chapters, I knew that was all going to change.
Categories: DOS, Programming, Reflections, Software
No Comments »
No Responses to “Microsoft Quick C Compiler”
Care to comment?